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Abstract

For switching diffusion systems with a homogeneous closed-loop
control we establish existence and uniqueness of solution of the equa-
tion, and rate of convergence to the stationary regime.

1 Introduction

This work stems from the investigation of F. Campillo and E. Pardoux into
the issue of a vehicle suspension device, see [7, 8]. It is also an extension of
recent works [2] and [1].

Stochastic ergodic control – in particular, with expected average in time
with infinite horizon as cost functional – proved to be a useful tool for con-
structing a closed-loop control of a vehicle suspension device, cf. [9] and refe-
rences therein. On theory of ergodic control for diffusion processes see, e.g.,
[4]. In [2] we have generalized the model of the suspension device to a multi-
regime one. That is, several types of the road surfaces were admitted and it
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was assumed that the type of the road surface determines a gear box regime
and, hence, also a working regime of the suspension device. This object
may be described by a hybrid system (cf. [6]) with dynamics of a switching
diffusion: position of the device is X, its velocity Y , and the type of the
road V . Switchings constitute a conditional Markov chain (see [16, 10, 15]),
with intensities conditional on the state of the diffusion component Xt. The
novelty in comparison to the latter works is degenerate diffusion and dis-
continuous coefficients (as in [2]). Similar equations without switching have
been considered in [1]. In comparison to [2], we consider below more general
systems, which, in particular, allow higher degeneracy – the latter admits
some natural physical interpretation – and dependence of switching process
intensities of the continuous component.

The essential issue in ergodic control is ergodicity of the controlled process
in the sense of Markov processes (see [13], [12, Ch.6.3]). It will be shown that
under every homogeneous admissible control policy the distribution of the
process converges in the long run to its limit at exponential rate uniformly
over all admissible control policies and locally uniform with respect to initial
conditions. A similar result holds true for mixing rate, however, we postpone
the details until further papers.

We want to extend our previous results in three directions: 1) to cover
more general multi-dimensional hamiltonian systems, including stochastic
differential equations of Langevin – Smoluchowsky type; 2) to allow switching
intensities dependent on diffusion state component; 3) to show convergence
joint for the couple (X, V ) (in our earlier paper intensities of V did not
depend on X and this question did not arise). For simplicity we restict our
presentation to the case of R3; the study of the general situation is postponed
till further papers. Notice that the case of R2 was considered in [2], so that
R3 is the “next simplest” option.

Hence, let us start with an SDE system in R3 without switching,

dX1
t = X2

t dt, X1
0 = x1 ∈ R,

dX2
t = X3

t dt, X2
0 = x2 ∈ R,

dX3
t = b(t,X1

t , X
2
t , X

3
t ) dt+ dWt, X3

0 = x3 ∈ R.

Here W is a standard Wiener process. Due to the control origin of the setting,
no regularity is assumed on the drift term b, which is just Borel measurable
of not more than linear growth.

Now let us introduce switching. Let (Vt, t ≥ 0) be a conditional Markov
chain in continuous time given “frozen” value of Xt = x and taking values in a
finite set S = {1, 2, . . . , N} with a generator Q(t, x) = (qij(t, x))N×N , x ∈ R3.
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This matrix determines transition probabilities over a small period of time
given Xt = x,

P(Vt+∆ = j|Vt = i,Xt = x) =

{
qij(t, x)∆ + o(∆) if i 6= j,

1 + qii(t, x)∆ + o(∆) if i = j,
(1)

where ∆ ↓ 0. For j = i the value qii is defined as qii = −
∑

j: j 6=i qij. Now

consider a hybrid SDE system in R3 × S,

dX1
t = X2

t dt, X1
0 = x1 ∈ R,

dX2
t = X3

t dt, X2
0 = x2 ∈ R,

dX3
t = b(t,X1

t , X
2
t , X

3
t , Vt) dt+ dWt, X3

0 = x3 ∈ R. (2)

Here W is a standard Wiener process, and the drift term b is a Borel mea-
surable function. In order to define the process (Xt, Vt) rigorously we should
present its two component generator Gt at t ≥ 0. The latter acts on a
function f(x, v), x ∈ R3, v ∈ S according to the rule,

(Gtf)(x, v) =
∑
j

qvj(t, x)f(x, j)

(3)

+x2fx1(x, v) + x3fx2(x, v) +
1

2
fx3x3(x, v) + b(t, x, v)fx3(x, v).

As was prompted above, we always assume uniform linear growth assump-
tion: for some constant C > 0

sup
v∈S
|b(t, x, v)| ≤ C(1 + |x|). (4)

As for intensities qij, we assume them to be contiuous functions of x, uni-
formly bounded and uniformly positive for each t,

qij(t, ·) ∈ C(R3), 0 < inf
i 6=j;x,t

qij(t, x) ≤ sup
i 6=j;x,t

qij(t, x) <∞. (5)

Conditions (4) and (5) are the only assumption needed for existence theorem,
while continuity has been added only for simplicity of presentation; it is likely
that non-degeneracy of inensities may be also dropped. In the theorem about
Lyapunov function we assume homogeneity in time and a special structure
of the drift b similar to that in [8]. Namely, qij = qij(x) and the drift in that
theorem will not depend on t and will have a form,

b(x1, x2, x3, v) = −u(x1, x2, x3, v)x3 − β1x1 − β2x2 + b̃(x1, x2, x3, v),

(6)

β1 > 0, β2 > 0, 0 < u1 ≤ u(·) ≤ u2 <∞, b̃(·) bounded.
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For simplicity, in this presentation b̃ ≡ 0. The main result is Theorem 4
below, however, all Theorems 1–3 are important on their own.

2 Results

2.1 Weak existence and uniqueness

Theorem 1 Let the system (1) – (2) with generator (3) satisfy the condi-
tions (4) and (5). Then this system has a unique in distribution weak solution
(X, V ) on [0,∞), which is a strong Markov process. All trajectories of V are
right-continuous step functions with no accumulations of jumps.

Proof of Theorem 1 uses Peano discretization and tightness of measures. For
discretized system the method from [1] and its extension proposed in [14]
is used; in turn they extend the existence result from [3]. Strong Markov
propery follows from weak uniqueness as in [11].

2.2 Lyapunov function

Stability or recurrence of the system follows from Lyapunov function; the
latter may be constructed following an extension of the trick from [7]. Let
us denote

τR := inf(s ≥ 0 : |Xs| ≤ R).

Theorem 2 Let the system (1) – (2) with generator (3) satisfy the condi-
tions (4), (5) and (6), with intensities q homogeneous in time. Then for R
large enough, there exist C, α > 0 such that for all t ≥ 0 and any x, v,

sup
0≤t

Ex|Xt|21(t ≤ τR) ≤ C(1 + |x|2)

and
Ex,v exp(ατR) ≤ C(1 + |x|2).

Proof follows from a Lyapunov function

f(x1, x2, x3) := ε(x1, x2)B(x1, x2)T + |x3|2 + ε(c1xz + c2yz),
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with ε > 0 small enough,

B =

(
b11 β1

β1 β2

)
and

b11 >
|β1|2

β2
.

The latter condition ensures that the matrix B is positive definite for small
values of ε > 0. Lyapunov property is guaranteed by further conditions,

c1β
1 > 0 c2β

2 > 2β1,

and

(−c1β
1) (2β1 − c2β

2)− (b11 −
1

2
c1β

2 − 1

2
c2β

1)2 < 0.

It is easily verified that the family of such matrices B is non-empty.

2.3 Local Markov–Dobrushin’s mixing

The next result is crucial for the method used in this paper. Denote Z =
(X, V ), BR := {(x, v) : |x| ≤ R} and let µs,s+T (z0, dz) be the transition
measure for the process Z from s to s+T , and µR′

s,s+T (z0, dz) – its restriction
on trajectories where the component X does not attain the level R′. We are
going to verify that for any R large enough there exist R′ ≥ R and a suitable
T > 0 such that

inf
s

inf
z0,z′0∈BR

∫
B′

R

(
µR′
s,s+T (z0, dz)

µR′
s,s+T (z′0, dz)

∧ 1

)
µR′

s,s+T (z′0, dz) > 0. (7)

The density of one measure with respect to another is interpreted in the usual
way, that is, as a density of the absolute continuous component. It suffices
to establish a “conditional” version of (7), for z0 and z′0 with equal second
components given that these second components both stay at one fixed state,

inf
z0,z

′
0∈BR:

v0=v′0=v̄∈S

∫
B′

R

(
µR′
s,s+T (z0, dz | v = v̄)

µR′
s,s+T (z′0, dz | v′ = v̄)

∧ 1

)
µR′

s,s+T (z′0, dz | v′ = v̄) > 0. (8)

Here · | v = v̄ (respectively, · | v′ = v̄) signifies a conditional probability
given that on the whole interval [s, s + T ], the process Vt (respectively, V ′t )
stays at v̄.

Theorem 3 Under the assumptions of Theorem 1, for any R > 0 there exist
R′ ≥ R and T > 0 such that the inequality (8) holds true.
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2.4 Convergence rate

Let µx,v
t denote the distribution of the pair (Xt, Vt).

Theorem 4 Under the assumptions of the Theorem 2, there exists a unique
stationary distribution µ∞ on B(R3)× 2S and there exist C, c > 0 such that

‖µx,v
t − µ∞‖TV ≤ C exp(−ct)(1 + |x|2), t ∈ [0,∞).

The Theorems 1 – 3 being established, the proof of the Theorem 4 follows in
the same way as in [2]. The idea of tackling additional discrete component
is as follows. Because all intensities are uniformly bounded and positive, dis-
crete components of two versions of the process meet at some state in a unit
of time with a positive probability and then both remain in that state during
another unit of time. Continuous components should be already close and be-
long to some bounded set, which is achievable due to the Lyapunov function.
Then during that second unit of time there is a positive conditional proba-
bility that continuous components could be coupled. More details about the
method can be found in [5].
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